Show simple item record
| Author | dc.contributor.author | López Fenner, Julio | |
| Author | dc.contributor.author | Pinto Jiménez, Manuel | |
| Admission date | dc.date.accessioned | 2018-12-20T14:06:43Z | |
| Available date | dc.date.available | 2018-12-20T14:06:43Z | |
| Publication date | dc.date.issued | 1997 | |
| Cita de ítem | dc.identifier.citation | Journal of Mathematical Analysis and Applications, Volumen 216, Issue 2, 2018, Pages 549-568 | |
| Identifier | dc.identifier.issn | 0022247X | |
| Identifier | dc.identifier.other | 10.1006/jmaa.1997.5684 | |
| Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/153963 | |
| Abstract | dc.description.abstract | We introduce the notion of (h,k) manifolds and give conditions under which the property of being a manifold with asymptotic phase holds. These conditions allow the construction of a transformation of the variational equation of a nonlinear nonautonomous systems with (h,k) dichotomies, into an almost decoupled quasilinear system. The class of admissiblehandkfunctions is also briefly analyzed. © 1997 Academic Press. | |
| Lenguage | dc.language.iso | en | |
| Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
| Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| Source | dc.source | Journal of Mathematical Analysis and Applications | |
| Keywords | dc.subject | Analysis | |
| Keywords | dc.subject | Applied Mathematics | |
| Título | dc.title | On (h, k) manifolds with asymptotic phase | |
| Document type | dc.type | Artículo de revista | |
| dcterms.accessRights | dcterms.accessRights | Acceso Abierto | |
| Cataloguer | uchile.catalogador | SCOPUS | |
| Indexation | uchile.index | Artículo de publicación SCOPUS | |
| uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- jmaa.1997.5684.pdf
- Size:
- 12.90Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile