On the nilpotence of the multiplication operator in commutative right nil algebras
Author
dc.contributor.author
Correa, Ivan
Author
dc.contributor.author
Hentzel, Irvin Roy
Author
dc.contributor.author
Labra, Alicia
Admission date
dc.date.accessioned
2018-12-20T14:06:48Z
Available date
dc.date.available
2018-12-20T14:06:48Z
Publication date
dc.date.issued
2002
Cita de ítem
dc.identifier.citation
Communications in Algebra, Volumen 30, Issue 7, 2018, Pages 3473-3488
Identifier
dc.identifier.issn
00927872
Identifier
dc.identifier.other
10.1081/AGB-120004499
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/154001
Abstract
dc.description.abstract
We study conditions under which the identity ((xx)x)x = 0 in a commutative nonassociative algebra A implies Rx is nil-potent where Rx is the multiplication operator Rx(y) = xy for all y in A. The separate conditions that we found to be sufficient are (1) dimension four or less, (2) any additional non-trivial identity of degree four, or (3) ((xx)x)(xx) = 0. We assume characteristic ≠ 2, 3.