Show simple item record
Author | dc.contributor.author | Kohnen, Winfried | |
Author | dc.contributor.author | Martin, Yves | |
Admission date | dc.date.accessioned | 2018-12-20T14:06:48Z | |
Available date | dc.date.available | 2018-12-20T14:06:48Z | |
Publication date | dc.date.issued | 2014 | |
Cita de ítem | dc.identifier.citation | International Journal of Number Theory, Volumen 10, Issue 8, 2018, Pages 1921-1927 | |
Identifier | dc.identifier.issn | 17930421 | |
Identifier | dc.identifier.other | 10.1142/S1793042114500626 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/154002 | |
Abstract | dc.description.abstract | © World Scientific Publishing Company. Let f be an even integral weight, normalized, cuspidal Hecke eigenform over SL2(Z) with Fourier coefficients a(n). Let j be a positive integer. We prove that for almost all primes σ the sequence (a(pjn))n0 has infinitely many sign changes. We also obtain a similar result for any cusp form with real Fourier coefficients that provide the characteristic polynomial of some generalized Hecke operator is irreducible over Q. | |
Lenguage | dc.language.iso | en | |
Publisher | dc.publisher | World Scientific Publishing Co. Pte Ltd | |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
Source | dc.source | International Journal of Number Theory | |
Keywords | dc.subject | Fourier coefficients | |
Keywords | dc.subject | Modular forms | |
Keywords | dc.subject | Sign changes | |
Título | dc.title | Sign changes of Fourier coefficients of cusp forms supported on prime power indices | |
Document type | dc.type | Artículo de revista | |
Cataloguer | uchile.catalogador | SCOPUS | |
Indexation | uchile.index | Artículo de publicación SCOPUS | |
uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- item_84928280601.pdf
- Size:
- 1.715Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile