Show simple item record

Authordc.contributor.authorBaeza, Ricardo 
Authordc.contributor.authorMoresi, Remo 
Admission datedc.date.accessioned2018-12-20T14:06:50Z
Available datedc.date.available2018-12-20T14:06:50Z
Publication datedc.date.issued1985
Cita de ítemdc.identifier.citationJournal of Algebra, Volumen 92, Issue 2, 2018, Pages 446-453
Identifierdc.identifier.issn1090266X
Identifierdc.identifier.issn00218693
Identifierdc.identifier.other10.1016/0021-8693(85)90133-4
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/154023
Abstractdc.description.abstractLet E, F be two fields of characteristic 2 and let W(E), W(F) be the Witt rings of non-singular symmetric bilinear forms over E and F. In this note it is proved that if dimE2 E = dimF2 F > 2, then E ≅ F is equivalent with W(E) ≅ W(F). © 1985.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Algebra
Keywordsdc.subjectAlgebra and Number Theory
Títulodc.titleOn the Witt-equivalence of fields of characteristic 2
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile