Ooplasmic segregation in the late interphase zygote of the leech Theromyzon trizonare is accomplished by reorganization of an ectoplasmic cytoskeleton formed by polar rings and meridional bands. The dynamic properties of this cytoskeleton were explored by time-lapse confocal and video microscopy. Cytoskeleton assembly was investigated in zygotes pulse-labeled with microinjected fluorophore-tagged or biotin-tagged dimeric tubulin and G-actin. Cytoskeleton disassembly was studied by comparing the linear dimensions of the cytoskeleton at different time points during late interphase. The relative distributions of F- and-G-actin were determined after microinjection of rhodamine-labeled actin and fluorescein-labeled DNase I. Results showed that labeled precursors were readily incorporated into a network of microtubules or actin filaments. Bipolar translocation of the rings and meridional bands was accompanied by the rapid assembly and disassembly of microtubules and actin filaments. Because
The organization of the cytoskeleton in the early first interphase zygote and its involvement in organelle redistribution were studied in the glossiphoniid leech Theromyzon trizonare by confocal and electron microscopy, ...
Acquisition of neuronal polarity is a complex process involving cellular and molecular events. The second messenger cAMP is involved in axonal specification through activation of protein kinase A. However, an alternative ...
Reactive oxygen species (ROS) produced by the NADPH oxidase (NOX) complex play
important physiological and pathological roles in neurotransmission and neurodegeneration,
respectively. However, the contribution of ROS to ...