Show simple item record
| Author | dc.contributor.author | Hentzel, Irvin Roy |  | 
| Author | dc.contributor.author | Labra, Alicia |  | 
| Admission date | dc.date.accessioned | 2018-12-20T14:11:21Z |  | 
| Available date | dc.date.available | 2018-12-20T14:11:21Z |  | 
| Publication date | dc.date.issued | 2007 |  | 
| Cita de ítem | dc.identifier.citation | Linear Algebra and Its Applications, Volumen 422, Issue 1, 2018, Pages 326-330 |  | 
| Identifier | dc.identifier.issn | 00243795 |  | 
| Identifier | dc.identifier.other | 10.1016/j.laa.2006.10.028 |  | 
| Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/154570 |  | 
| Abstract | dc.description.abstract | We study commutative algebras which are generalizations of Jordan algebras. The associator is defined as usual by (x, y, z) = (x y)z - x(y z). The Jordan identity is (x2, y, x) = 0. In the three generalizations given below, t, β, and γare scalars. ((x x)y)x + t((x x)x)y = 0, ((x x)x)(y x) - (((x x)x)y)x = 0, β((x x)y)x + γ((x x)x)y - (β + γ)((y x)x)x = 0. We show that with the exception of a few values of the parameters, the first implies both the second and the third. The first is equivalent to the combination of ((x x)x)x = 0 and the third. We give examples to show that our results are in some reasonable sense, the best possible. © 2006 Elsevier Inc. All rights reserved. |  | 
| Lenguage | dc.language.iso | en |  | 
| Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile |  | 
| Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ |  | 
| Source | dc.source | Linear Algebra and Its Applications |  | 
| Keywords | dc.subject | 3-Jordan |  | 
| Keywords | dc.subject | Jordan |  | 
| Keywords | dc.subject | Nilalgebra |  | 
| Keywords | dc.subject | Power-associative |  | 
| Título | dc.title | Generalized Jordan algebras |  | 
| Document type | dc.type | Artículo de revista |  | 
| dcterms.accessRights | dcterms.accessRights | Acceso Abierto |  | 
| Cataloguer | uchile.catalogador | SCOPUS |  | 
| Indexation | uchile.index | Artículo de publicación SCOPUS |  | 
| uchile.cosecha | uchile.cosecha | SI |  | 
 
             
        
Files in this item
- Name:
- j.laa.2006.10.028.pdf
- Size:
- 12.90Kb
- Format:
- PDF
 
 
 
This item appears in the following Collection(s)
Show simple item record
 
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile