Show simple item record

Authordc.contributor.authorHentzel, Irvin Roy 
Authordc.contributor.authorLabra, Alicia 
Admission datedc.date.accessioned2018-12-20T14:11:21Z
Available datedc.date.available2018-12-20T14:11:21Z
Publication datedc.date.issued2007
Cita de ítemdc.identifier.citationLinear Algebra and Its Applications, Volumen 422, Issue 1, 2018, Pages 326-330
Identifierdc.identifier.issn00243795
Identifierdc.identifier.other10.1016/j.laa.2006.10.028
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/154570
Abstractdc.description.abstractWe study commutative algebras which are generalizations of Jordan algebras. The associator is defined as usual by (x, y, z) = (x y)z - x(y z). The Jordan identity is (x2, y, x) = 0. In the three generalizations given below, t, β, and γare scalars. ((x x)y)x + t((x x)x)y = 0, ((x x)x)(y x) - (((x x)x)y)x = 0, β((x x)y)x + γ((x x)x)y - (β + γ)((y x)x)x = 0. We show that with the exception of a few values of the parameters, the first implies both the second and the third. The first is equivalent to the combination of ((x x)x)x = 0 and the third. We give examples to show that our results are in some reasonable sense, the best possible. © 2006 Elsevier Inc. All rights reserved.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceLinear Algebra and Its Applications
Keywordsdc.subject3-Jordan
Keywordsdc.subjectJordan
Keywordsdc.subjectNilalgebra
Keywordsdc.subjectPower-associative
Títulodc.titleGeneralized Jordan algebras
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile