Show simple item record
| Author | dc.contributor.author | Hentzel, Irvin Roy | |
| Author | dc.contributor.author | Labra, Alicia | |
| Admission date | dc.date.accessioned | 2018-12-20T14:11:21Z | |
| Available date | dc.date.available | 2018-12-20T14:11:21Z | |
| Publication date | dc.date.issued | 2007 | |
| Cita de ítem | dc.identifier.citation | International Journal of Algebra and Computation, Volumen 17, Issue 1, 2018, Pages 27-35 | |
| Identifier | dc.identifier.issn | 02181967 | |
| Identifier | dc.identifier.other | 10.1142/S0218196707003329 | |
| Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/154574 | |
| Abstract | dc.description.abstract | We extend the concept of commutative nilalgebras to commutative algebras which are not power associative. We shall study commutative algebras A over fields of characteristic ≠ 2, 3 which satisfy the identities x(x(xx)) = 0 and β{x(y(xx)) - x(x(xy))} + γ{y(x(xx)) - x(x(xy))} = 0. In these algebras the multiplication operator was shown to be nilpotent by Correa, Hentzel and Labra [2]. In this paper we prove that for every x ∈ A we have A(A((xx)(xx))) = 0. We prove that there is an ideal I of A satisfying AI = IA = 0 and A/I is power associative. © World Scientific Publishing Company. | |
| Lenguage | dc.language.iso | en | |
| Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
| Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| Source | dc.source | International Journal of Algebra and Computation | |
| Keywords | dc.subject | Left nilalgebra | |
| Keywords | dc.subject | Nilpotent | |
| Keywords | dc.subject | Power associative | |
| Título | dc.title | On left nilalgebras of left nilindex four satisfying an identity of degree four | |
| Document type | dc.type | Artículo de revista | |
| Cataloguer | uchile.catalogador | SCOPUS | |
| Indexation | uchile.index | Artículo de publicación SCOPUS | |
| uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- item_33847652926.pdf
- Size:
- 1.762Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile