Show simple item record

Authordc.contributor.authorHentzel, Irvin Roy 
Authordc.contributor.authorLabra, Alicia 
Admission datedc.date.accessioned2018-12-20T14:11:21Z
Available datedc.date.available2018-12-20T14:11:21Z
Publication datedc.date.issued2007
Cita de ítemdc.identifier.citationInternational Journal of Algebra and Computation, Volumen 17, Issue 1, 2018, Pages 27-35
Identifierdc.identifier.issn02181967
Identifierdc.identifier.other10.1142/S0218196707003329
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/154574
Abstractdc.description.abstractWe extend the concept of commutative nilalgebras to commutative algebras which are not power associative. We shall study commutative algebras A over fields of characteristic ≠ 2, 3 which satisfy the identities x(x(xx)) = 0 and β{x(y(xx)) - x(x(xy))} + γ{y(x(xx)) - x(x(xy))} = 0. In these algebras the multiplication operator was shown to be nilpotent by Correa, Hentzel and Labra [2]. In this paper we prove that for every x ∈ A we have A(A((xx)(xx))) = 0. We prove that there is an ideal I of A satisfying AI = IA = 0 and A/I is power associative. © World Scientific Publishing Company.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceInternational Journal of Algebra and Computation
Keywordsdc.subjectLeft nilalgebra
Keywordsdc.subjectNilpotent
Keywordsdc.subjectPower associative
Títulodc.titleOn left nilalgebras of left nilindex four satisfying an identity of degree four
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile