Show simple item record

Authordc.contributor.authorRojas, Anita M. 
Admission datedc.date.accessioned2018-12-20T14:11:43Z
Available datedc.date.available2018-12-20T14:11:43Z
Publication datedc.date.issued2007
Cita de ítemdc.identifier.citationRevista Matematica Iberoamericana, Volumen 23, Issue 2, 2018, Pages 397-420
Identifierdc.identifier.issn02132230
Identifierdc.identifier.other10.4171/RMI/500
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/154608
Abstractdc.description.abstractConsider a finite group G acting on a Riemann surface S, and the associated branched Galois cover πG : S → Y = S/G. We introduce the concept of geometric signature for the action of G, and we show that it captures much information: the geometric structure of the lattice of intermediate covers, the isotypical decomposition of the rational representation of the group G acting on the Jacobian variety JS of S, and the dimension of the subvarieties of the isogeny decomposition of JS. We also give a version of Riemann's existence theorem, adjusted to the present setting.
Lenguagedc.language.isoen
Publisherdc.publisherUniversidad Autonoma de Madrid
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceRevista Matematica Iberoamericana
Keywordsdc.subjectGeometric signature
Keywordsdc.subjectGroup actions
Keywordsdc.subjectJacobian varieties
Keywordsdc.subjectRiemann surfaces
Keywordsdc.subjectRiemann's existence theorem
Títulodc.titleGroup actions on Jacobian varieties
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile