An equivalence in generalized almost-Jordan algebras
Author | dc.contributor.author | Guzzo, Henrique | |
Author | dc.contributor.author | Labra, Alicia | |
Admission date | dc.date.accessioned | 2018-12-20T14:15:21Z | |
Available date | dc.date.available | 2018-12-20T14:15:21Z | |
Publication date | dc.date.issued | 2016 | |
Cita de ítem | dc.identifier.citation | Proyecciones, Volumen 35, Issue 4, 2018, Pages 505-519 | |
Identifier | dc.identifier.issn | 07176279 | |
Identifier | dc.identifier.issn | 07160917 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/155278 | |
Abstract | dc.description.abstract | In this paper we work with the variety of commutative algebras satisfying the identity β((x2y)x - ((yx)x)x)+γ(x3y - ((yx)x)x) = 0, where β, γ are scalars. They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying (3β + γ)(Gy(x, z, t) - Gx(y, z, t)) + (β + 3γ)(J(x, z, t)y - J(y, z, t)x) = 0, for all x, y, z, t ∈ A, where J(x, y, z) = (xy)z+(yz)x+(zx)y and Gx(y, z, t) = (yz, x, t)+(yt, x, z)+ (zt, x, y). Moreover, we prove that if A is a commutative algebra, then J(x, z, t)y = J (y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a generalized almost-Jordan algebra for β = 1 and γ = -3, that is, A satisfies the identity (x2y)x + 2((yx)x)x - 3x3y = 0 and we study this identity. We also prove that if A is a commutative algebra, then Gy(x, z, t) = Gx(y, z, t), for all x, y, z, t ∈ A, if and only if A is an almost-Jordan or a Lie Triple algebra. | |
Lenguage | dc.language.iso | en | |
Publisher | dc.publisher | Universidad Catolica del Norte | |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
Source | dc.source | Proyecciones | |
Keywords | dc.subject | Baric algebras | |
Keywords | dc.subject | Generalized almost-Jordan algebras | |
Keywords | dc.subject | Jordan algebras | |
Keywords | dc.subject | Lie Triple algebras | |
Título | dc.title | An equivalence in generalized almost-Jordan algebras | |
Document type | dc.type | Artículo de revista | |
Cataloguer | uchile.catalogador | SCOPUS | |
Indexation | uchile.index | Artículo de publicación SCOPUS | |
uchile.cosecha | uchile.cosecha | SI |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas