Show simple item record

Authordc.contributor.authorGuzzo, Henrique 
Authordc.contributor.authorLabra, Alicia 
Admission datedc.date.accessioned2018-12-20T14:15:21Z
Available datedc.date.available2018-12-20T14:15:21Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationProyecciones, Volumen 35, Issue 4, 2018, Pages 505-519
Identifierdc.identifier.issn07176279
Identifierdc.identifier.issn07160917
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/155278
Abstractdc.description.abstractIn this paper we work with the variety of commutative algebras satisfying the identity β((x2y)x - ((yx)x)x)+γ(x3y - ((yx)x)x) = 0, where β, γ are scalars. They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying (3β + γ)(Gy(x, z, t) - Gx(y, z, t)) + (β + 3γ)(J(x, z, t)y - J(y, z, t)x) = 0, for all x, y, z, t ∈ A, where J(x, y, z) = (xy)z+(yz)x+(zx)y and Gx(y, z, t) = (yz, x, t)+(yt, x, z)+ (zt, x, y). Moreover, we prove that if A is a commutative algebra, then J(x, z, t)y = J (y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a generalized almost-Jordan algebra for β = 1 and γ = -3, that is, A satisfies the identity (x2y)x + 2((yx)x)x - 3x3y = 0 and we study this identity. We also prove that if A is a commutative algebra, then Gy(x, z, t) = Gx(y, z, t), for all x, y, z, t ∈ A, if and only if A is an almost-Jordan or a Lie Triple algebra.
Lenguagedc.language.isoen
Publisherdc.publisherUniversidad Catolica del Norte
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceProyecciones
Keywordsdc.subjectBaric algebras
Keywordsdc.subjectGeneralized almost-Jordan algebras
Keywordsdc.subjectJordan algebras
Keywordsdc.subjectLie Triple algebras
Títulodc.titleAn equivalence in generalized almost-Jordan algebras
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile