Show simple item record

Authordc.contributor.authorFenner, Julio López 
Authordc.contributor.authorPinto Jiménez, Manuel 
Admission datedc.date.accessioned2018-12-20T14:28:41Z
Available datedc.date.available2018-12-20T14:28:41Z
Publication datedc.date.issued1999
Cita de ítemdc.identifier.citationNonlinear Analysis, Theory, Methods and Applications, Volumen 38, Issue 3, 2018, Pages 307-325
Identifierdc.identifier.issn0362546X
Identifierdc.identifier.other10.1016/S0362-546X(98)00198-9
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/156110
Abstractdc.description.abstractHartman's linearization theorem for ordinary differential equations states that a 1:1 correspondence exists between solutions of a linear autonomous system and those of a perturbed system as long as the perturbation term satisfies some goodness conditions, like smallness, continuity or being Lipschitzian. This theorem is proven to hold not only for systems accepting a broader class of dichotomies, but also for a class of systems with impulse effect. This furnishes a result valid for pure continuous systems, described by an ordinary differential equation, as well as for pure discrete systems, described by difference equations.
Lenguagedc.language.isoen
Publisherdc.publisherElsevier Science Ltd
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceNonlinear Analysis, Theory, Methods and Applications
Keywordsdc.subjectAnalysis
Keywordsdc.subjectApplied Mathematics
Títulodc.titleOn a Hartman linearization theorem for a class of ODE with impulse effect
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile