Show simple item record

Authordc.contributor.authorMăntoiu, Marius 
Admission datedc.date.accessioned2018-12-20T14:34:16Z
Available datedc.date.available2018-12-20T14:34:16Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationArchiv der Mathematik, Volumen 109, Issue 2, 2018, Pages 167-177
Identifierdc.identifier.issn14208938
Identifierdc.identifier.issn0003889X
Identifierdc.identifier.other10.1007/s00013-017-1037-0
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/156480
Abstractdc.description.abstract© 2017, Springer International Publishing. Let G be a Carnot group of homogeneous dimension M and Δ its horizontal sublaplacian. For α∈ (0 , M) we show that operators of the form Hα: = (- Δ) α+ V have no singular spectrum, under generous assumptions on the multiplication operator V. The proof is based on commutator methods and Hardy inequalities.
Lenguagedc.language.isoen
Publisherdc.publisherBirkhauser Verlag AG
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceArchiv der Mathematik
Keywordsdc.subjectCommutator
Keywordsdc.subjectInvariant differential operator
Keywordsdc.subjectSingular spectrum
Keywordsdc.subjectStratified Lie group
Keywordsdc.subjectSublaplacian
Títulodc.titleSpectral analysis for perturbed operators on Carnot groups
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile