Show simple item record
Author | dc.contributor.author | Măntoiu, Marius | |
Admission date | dc.date.accessioned | 2018-12-20T14:34:16Z | |
Available date | dc.date.available | 2018-12-20T14:34:16Z | |
Publication date | dc.date.issued | 2017 | |
Cita de ítem | dc.identifier.citation | Archiv der Mathematik, Volumen 109, Issue 2, 2018, Pages 167-177 | |
Identifier | dc.identifier.issn | 14208938 | |
Identifier | dc.identifier.issn | 0003889X | |
Identifier | dc.identifier.other | 10.1007/s00013-017-1037-0 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/156480 | |
Abstract | dc.description.abstract | © 2017, Springer International Publishing. Let G be a Carnot group of homogeneous dimension M and Δ its horizontal sublaplacian. For α∈ (0 , M) we show that operators of the form Hα: = (- Δ) α+ V have no singular spectrum, under generous assumptions on the multiplication operator V. The proof is based on commutator methods and Hardy inequalities. | |
Lenguage | dc.language.iso | en | |
Publisher | dc.publisher | Birkhauser Verlag AG | |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
Source | dc.source | Archiv der Mathematik | |
Keywords | dc.subject | Commutator | |
Keywords | dc.subject | Invariant differential operator | |
Keywords | dc.subject | Singular spectrum | |
Keywords | dc.subject | Stratified Lie group | |
Keywords | dc.subject | Sublaplacian | |
Título | dc.title | Spectral analysis for perturbed operators on Carnot groups | |
Document type | dc.type | Artículo de revista | |
Cataloguer | uchile.catalogador | SCOPUS | |
Indexation | uchile.index | Artículo de publicación SCOPUS | |
uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- item_85017105981.pdf
- Size:
- 1.631Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile