Show simple item record

Authordc.contributor.authorRössler, Jaime 
Authordc.contributor.authorKiwi Tichauer, Miguel 
Authordc.contributor.authorHess, Benno 
Authordc.contributor.authorMarkus, Mario 
Admission datedc.date.accessioned2018-12-20T14:39:25Z
Available datedc.date.available2018-12-20T14:39:25Z
Publication datedc.date.issued1989
Cita de ítemdc.identifier.citationPhysical Review A, Volumen 39, Issue 11, 2018, Pages 5954-5960
Identifierdc.identifier.issn10502947
Identifierdc.identifier.other10.1103/PhysRevA.39.5954
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/156912
Abstractdc.description.abstractMany natural phenomena are governed by nonlinear recursive relations of the type xt+1=f(xt), where f does depend on t. We focus our interest on the particularly simple case xt+1=rtxt(1-xt), where rt adopts either periodically or at random the values A and B. Graphical representations of the Lyapunov exponent on the AB plane show unexpected features, like self-similarity and early chaos (i.e., chaos for very low parameter values). In relation with the latter we discuss a novel mechanism to induce chaotic behavior. The meaning of the Lyapunov exponent for random processes is examined. © 1989 The American Physical Society.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourcePhysical Review A
Keywordsdc.subjectAtomic and Molecular Physics, and Optics
Títulodc.titleModulated nonlinear processes and a novel mechanism to induce chaos
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile