Show simple item record

Authordc.contributor.authorHojman Guiñerman, Sergio 
Authordc.contributor.authorPardo, Francisco 
Authordc.contributor.authorAulestia, Luis 
Authordc.contributor.authorDe Lisa, Francisco 
Admission datedc.date.accessioned2018-12-20T14:41:12Z
Available datedc.date.available2018-12-20T14:41:12Z
Publication datedc.date.issued1992
Cita de ítemdc.identifier.citationJournal of Mathematical Physics, Volumen 33, Issue 2, 2018, Pages 584-590
Identifierdc.identifier.issn00222488
Identifierdc.identifier.other10.1063/1.529793
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/157021
Abstractdc.description.abstractIn this work the inverse problem of the variational calculus for systems of differential equations of any order is analyzed. It is shown that, if a Lagrangian exists for a given regular system of differential equations, then it can be written as a linear combination of the equations of motion. The conditions that these coefficients must satisfy for the existence of an S-equivalent Lagrangian are also exhibited. A generalization is also made of the concept of Lagrangian symmetries and they are related with constants of motion. © 1992 American Institute of Physics.
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Mathematical Physics
Keywordsdc.subjectStatistical and Nonlinear Physics
Keywordsdc.subjectMathematical Physics
Títulodc.titleLagrangians for differential equations of any order
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile