About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Químicas y Farmacéuticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Químicas y Farmacéuticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Molecular orbital calculations of hydrogen bonding in ammonia - Formic acid system in the presence of electric fields

Artículo
Thumbnail
Open/Download
Iconitem_1842735231.pdf (2.009Kb)
Access note
Acceso a solo metadatos
Publication date
2004
Metadata
Show full item record
Cómo citar
Parra-Mouchet, J.
Cómo citar
Molecular orbital calculations of hydrogen bonding in ammonia - Formic acid system in the presence of electric fields
.
Copiar
Cerrar
Author
  • Parra-Mouchet, J.;
  • Zapata-Torres, G.;
  • Fink, W.;
  • Nash, C.;
Abstract
The effects of electric fields on hydrogen bonding in ammonia-formic acid system, are examined with STO-3G and 6-31 G(d) wavefunctions. This system was used in a previous work to model hydrogen bonding in crystalline amino acids and the calculations were performed at HF/STO-3G level. The results on the relative position of the tautomeric equilibrium between the neutral and zwitterionic forms were explained in terms of the relative stabilization of the ionic partners as a function of their placement in positive and negative wells created by the external electric field. In order to rationalize those results at electronic structure level, in this paper we analyze the response of the molecular orbitals implicated in the hydrogen bridge, N...H...O, to various imposed external fields. It is found that the stabilization of the zwitterionic structure occurs due to the destabilization of the MO localized essentially at the nitrogen electron lone pair, n-orbital, and concomitant with the stabilization of the MO essentially localized at the functional oxygen electron lone pair, o-orbital. The stabilization of the neutral structure occurs in the opposite situation. In addition, these eigenvalues are shown to be adequate regional molecular descriptors of the base reactivity of amines and conjugated bases of carboxylic acids, in gas phase and in the presence of electric fields.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/158878
ISSN: 07179324
Quote Item
Journal of the Chilean Chemical Society, Volumen 49, Issue 1, 2004, Pages 75-81
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account