Ion cyclotron instability triggered by drifting minor ion species: Cascade effect and exact results
Artículo
Open/ Download
Publication date
2004Metadata
Show full item record
Cómo citar
Gomberoff, L.
Cómo citar
Ion cyclotron instability triggered by drifting minor ion species: Cascade effect and exact results
Abstract
On the basis of bi-Maxwellian velocity distribution functions it has been recently shown that the combined effect of heavy ion thermal anisotropy and drift velocity can trigger ion-cyclotron instabilities beyond the corresponding heavy ion-cyclotron frequency. (Proton-cyclotron instability induced by the thermal anisotrophy of minor ions. J. Geophys. Res. 107 (2002) 1494; Ion-cyclotron instability due to the thermal anisotrophy of drifting ion species. J. Geophys. Res. 108 (2003) 1050.) Here we show that the cascade-type mechanism proposed by Gomberoff and Valdivia (2002, 2003) can take place in the region where main heating of the fast solar wind seems to occur (i.e. within 10 solar radii). We also compare some of the results obtained by using the semi-cold approximation with the exact kinetic dispersion relation.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/159839
DOI: 10.1016/j.pss.2004.01.004
ISSN: 00320633
Quote Item
Planetary and Space Science, Volumen 52, Issue 8, 2004, Pages 679-684
Collections