Directed acyclic graphs in statistical modelling of epidemiological studies Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: Un complemento al modelamiento estadístico en estudios epidemiológicos observac
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2018Metadata
Show full item record
Cómo citar
Werlinger, Fabiola
Cómo citar
Directed acyclic graphs in statistical modelling of epidemiological studies Aplicación de grafos acíclicos dirigidos en la evaluación de un set mínimo de ajuste de confusores: Un complemento al modelamiento estadístico en estudios epidemiológicos observac
Author
Abstract
© 2018, Sociedad Medica de Santiago. All rights reserved. Background: Confusion in observational epidemiological studies distorts the relationship between exposure and event. “Step by step” regression models, diverts the decision to a statistical algorithm with little causal basis. Directed Acyclic Graphs (DAGs), qualitatively and visually assess the confusion. They can complement the decision on confounder control during statistical modeling. Aim: To evaluate the minimum set of confounders to be controlled in a cause-effect relationship with the use of “step-by-step regression” and DAGs, in a study of arsenic exposure. Material and Methods: We worked with data from Cáceres et al., 2010 in 66 individuals from northern Chile. The interindividual variability in the urinary excretion of dimethyl arsenic acid attributable to the GSTT1 polymorphism was estimated. A causal DAG was constructed using DAGitty v2.3 with the list of variables. A multiple linear regression model with the step-by-s
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/167672
DOI: 10.4067/s0034-98872018000700907
ISSN: 07176163
00349887
Quote Item
Revista Medica de Chile, Volumen 146, Issue 7, 2018, Pages 907-913
Collections