Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1
Artículo
Open/ Download
Publication date
2019Metadata
Show full item record
Cómo citar
Stähli, Alexandra
Cómo citar
Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1
Author
Abstract
Periodontal disease is associated with chronic oxidative stress and inflammation. Caffeic acid phenethyl ester (CAPE), which is a
potent inducer of heme oxygenase 1 (HO1), is a central active component of propolis, and the application of propolis improves
periodontal status in diabetic patients. Here, primary murine macrophages were exposed to CAPE. Target gene expression was
assessed by whole-genome microarray, RT-PCR and Western blotting. The antioxidative and anti-inflammatory activities of CAPE
were examined by exposure of the cells to hydrogen peroxide, saliva and periodontal pathogens. The involvement of HO1 was
investigated with the HO1 inhibitor tin protoporphyrin (SnPP) and knockout mice for Nrf2, which is a transcription factor for
detoxifying enzymes. CAPE increased HO1 and other heat shock proteins in murine macrophages. A p38 MAPK inhibitor and Nrf2
knockout attenuated CAPE-induced HO1 expression in macrophages. CAPE exerted strong antioxidative activity. Additionally, CAPE
reduced the inflammatory response to saliva and periodontal pathogens. Blocking HO1 decreased the antioxidative activity and
attenuated the anti-inflammatory activity of CAPE. In conclusion, CAPE exerted its antioxidative effects through the Nrf2-mediated
HO1 pathway and its anti-inflammatory effects through NF-κB inhibition. However, preclinical models evaluating the use of CAPE in
periodontal inflammation are necessary in future studies.
Indexation
Artículo de publicación SCOPUS
Identifier
URI: https://repositorio.uchile.cl/handle/2250/171525
DOI: 10.1038/s41368-018-0039-5
ISSN: 20493169
Quote Item
International Journal of Oral Science, Volumen 11, Issue 1, 2019
Collections