Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium
Author
dc.contributor.author
Amster, Pablo
Author
dc.contributor.author
Kuna, Mariel Paula
Author
dc.contributor.author
Robledo Veloso, Gonzalo
Admission date
dc.date.accessioned
2019-10-22T03:11:13Z
Available date
dc.date.available
2019-10-22T03:11:13Z
Publication date
dc.date.issued
2019
Cita de ítem
dc.identifier.citation
Communications on Pure and Applied Analysis, Volumen 18, Issue 4, 2019, Pages 1695-1709
Identifier
dc.identifier.issn
15535258
Identifier
dc.identifier.issn
15340392
Identifier
dc.identifier.other
10.3934/cpaa.2019080
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/171886
Abstract
dc.description.abstract
Small non-autonomous perturbations around an equilibrium of a nonlinear delayed system are studied. Under appropriate assumptions, it is shown that the number of T-periodic solutions lying inside a bounded domain Ω ⊂ R N is, generically, at least |χ ± 1| + 1, where χ denotes the Euler characteristic of Ω. Moreover, some connections between the associated fixed point operator and the Poincaré operator are explored.