Show simple item record

Authordc.contributor.authorCanals, Catalina 
Authordc.contributor.authorCanals, Andrea 
Admission datedc.date.accessioned2019-10-30T15:26:03Z
Available datedc.date.available2019-10-30T15:26:03Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationJournal of Statistical Computation and Simulation, Volumen 89, Issue 10, 2019, Pages 1887-1898
Identifierdc.identifier.issn15635163
Identifierdc.identifier.issn00949655
Identifierdc.identifier.other10.1080/00949655.2019.1602125
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/172397
Abstractdc.description.abstractThe central limit theorem indicates that when the sample size goes to infinite, the sampling distribution of means tends to follow a normal distribution; it is the basis for the most usual confidence interval and sample size formulas. This study analyzes what sample size is large enough to assume that the distribution of the estimator of a proportion follows a Normal distribution. Also, we propose the use of a correction factor in sample size formulas to ensure a confidence level even when the central limit theorem does not apply for these distributions.
Lenguagedc.language.isoen
Publisherdc.publisherTaylor and Francis Ltd.
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Statistical Computation and Simulation
Keywordsdc.subjectBernoulli distribution
Keywordsdc.subjectcentral limit theorem
Keywordsdc.subjectconfidence interval
Keywordsdc.subjectproportion
Keywordsdc.subjectSample size
Títulodc.titleWhen is n large enough? Looking for the right sample size to estimate proportions
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile