(omega, c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells
Author
dc.contributor.author
Álvarez, Edgardo
Author
dc.contributor.author
Castillo, Samuel
Author
dc.contributor.author
Pinto Jiménez, Manuel
Admission date
dc.date.accessioned
2020-05-08T14:16:28Z
Available date
dc.date.available
2020-05-08T14:16:28Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Math Meth Appl Sci. 2020;43:305–319
es_ES
Identifier
dc.identifier.other
10.1002/mma.5880
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/174580
Abstract
dc.description.abstract
In this paper, we study a new class of functions, which we call (omega, c)-asymptotically periodic functions. This collection includes asymptotically periodic, asymptotically antiperiodic, asymptotically Bloch-periodic, and unbounded functions. We prove that the set conformed by these functions is a Banach space with a suitable norm. Furthermore, we show several properties of this class of functions as the convolution invariance. We present some examples and a composition result. As an application, we prove the existence and uniqueness of (omega, c)-asymptotically periodic mild solutions to the first-order abstract Cauchy problem on the real line. Also, we establish some sufficient conditions for the existence of positive (omega, c)-asymptotically periodic solutions to the Lasota-Wazewska equation with unbounded oscillating production of red cells.
es_ES
Patrocinador
dc.description.sponsorship
Departamento Administrativo de Ciencia, Tecnologia e Innovacion 121556933876 164408 3/R
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 1170466