Show simple item record

Authordc.contributor.authorHidalgo Sacoto, R. 
Authordc.contributor.authorGonzález, R. I. 
Authordc.contributor.authorVogel, E. E. 
Authordc.contributor.authorAllende, S. 
Authordc.contributor.authorMella Riquelme, José 
Authordc.contributor.authorCárdenas Valencia, Carlos 
Authordc.contributor.authorTroncoso, Robert E. 
Authordc.contributor.authorMuñoz Sáez, Francisco 
Admission datedc.date.accessioned2020-06-11T22:04:54Z
Available datedc.date.available2020-06-11T22:04:54Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationPhysical Review B 101, 205425 (2020)es_ES
Identifierdc.identifier.other10.1103/PhysRevB.101.205425
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175409
Abstractdc.description.abstractMagnonic excitations in the two-dimensional (2D) van der Waals (vdW) ferromagnet chromium triiodide (CrI3) are studied. We find that bulk magnons exhibit a nontrivial topological band structure without the need for Dzyaloshinskii-Moriya interaction. This is shown in vdW heterostructures, consisting of single-layer CrI3 on different 2D materials such as MoTe2, HfS2, and WSe2. We find numerically that the proposed substrates substantially modify the out-of-plane magnetic anisotropy on each sublattice of the CrI3 subsystem. The induced staggered anisotropy, combined with a proper band inversion, leads to the opening of a topological gap of the magnon spectrum. Since the gap is opened nonsymmetrically at the K+ and K- points of the Brillouin zone, an imbalance in the magnon population between these two valleys can be created under a driving force. This phenomenon has a close analogy to the so-called valley Hall effect and is thus termed the magnon valley Hall effect. In linear response to a temperature gradient, we quantify this effect by the evaluation of the temperature dependence of the magnon thermal Hall effect. These findings open a different avenue by adding the valley degrees of freedom besides the spin in the study of magnons.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1190036 1191353 11180557 1200867 3200697 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) 21151207 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT PIA/BASAL AFB180001 supercomputing infrastructure of the NLHPC ECM-02 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT PIA/ANILLOS ACT192023 European Union's Horizon 2020 Research and Innovation Programme DLV-737038 Research Council of Norway through is Centres of Excellence funding scheme 262633es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Physical Societyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourcePhysical Review Bes_ES
Keywordsdc.subjectInitio molecular-dynamicses_ES
Keywordsdc.subjectTotal-energy calculationses_ES
Keywordsdc.subjectTransitiones_ES
Keywordsdc.subjectMonolayeres_ES
Keywordsdc.subjectCrystales_ES
Keywordsdc.subjectMetales_ES
Títulodc.titleMagnon valley Hall effect in CrI3-based van der Waals heterostructureses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile