Show simple item record

Authordc.contributor.authorValencia, Felipe 
Authordc.contributor.authorRamírez González, Max 
Authordc.contributor.authorVaras, Alejandro 
Authordc.contributor.authorRogan Castillo, José Antonio 
Admission datedc.date.accessioned2020-06-15T21:30:38Z
Available datedc.date.available2020-06-15T21:30:38Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationJ. Phys. Chem. C 2020, 124, 10143−10149es_ES
Identifierdc.identifier.other10.1021/acs.jpcc.0c00258
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175464
Abstractdc.description.abstractThe existence of polycrystalline shells has been widely reported in the synthesis of hollow nanoparticles; however, the exact role displayed by the grain boundaries on the stability has been scarcely studied. By including them, in this work, we study for the first time the contribution of the polycrystalline structure in the stability of this unique kind of nanostructures, addressing at the same time, a more realistic modeling of hollow nanoparticles. The role of the polycrystalline structure was studied in gold hollow nanoparticles using molecular dynamics simulations for a wide range of shell thickness and grain sizes. One of the main findings is that the shell thickness necessary for transition from a spherical to a shrunk structure is related to the grain size reduction. The results suggest that to achieve larger hollow nanoparticles, less defective shells are necessary, with single-crystal shells establishing an upper limit in the size that a structure can attain. The cavity shrinkage in a polycrystalline HNP is due to a complex combination of grain diffusion, rotations, dislocation emission, and twining, all of them activated from the grain boundary regions. Our findings suggest that the polycrystalline structure is a crucial parameter to control and improve the stability of the hollow nanoparticles.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1190662 United States Department of Defense Air Force Office of Scientific Research (AFOSR) FA9550-16-1-0122 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT PIA/BASAL AFB180001 NLHPC ECM-02 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 11190484es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Chemical Societyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal of Physical Chemistry Ces_ES
Keywordsdc.subjectEmbedded-atom methodes_ES
Keywordsdc.subjectGrain-boundary diffusiones_ES
Keywordsdc.subjectCarbon nanosphereses_ES
Keywordsdc.subjectGold nanoparticleses_ES
Keywordsdc.subjectHydrogen storagees_ES
Keywordsdc.subjectLaser-ablationes_ES
Keywordsdc.subjectNanostructureses_ES
Keywordsdc.subjectKirkendalles_ES
Keywordsdc.subjectPlatinumes_ES
Keywordsdc.subjectDynamicses_ES
Títulodc.titleUnderstanding the stability of Hollow nanoparticles with polycrystalline shellsses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile