Show simple item record

Authordc.contributor.authorValencia, Felipe 
Authordc.contributor.authorPinto, Benjamín 
Authordc.contributor.authorKiwi Tichauer, Miguel 
Authordc.contributor.authorRuestes, Carlos J. 
Authordc.contributor.authorBringa, Eduardo M. 
Authordc.contributor.authorRogan, José 
Admission datedc.date.accessioned2020-06-16T22:28:33Z
Available datedc.date.available2020-06-16T22:28:33Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationComputational Materials Science 179 (2020) 109642es_ES
Identifierdc.identifier.other10.1016/j.commatsci.2020.109642
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175527
Abstractdc.description.abstractPolycrystalline hollow nanoparticles present a unique combination of strength and flexibility. However, the exact role displayed by their grain structure in mechanical properties has not been yet fully understood. Here, by means of molecular dynamics simulations, the role of grain boundary structure during the nanoindentation of metallic hollow nanoparticles with a polycrystalline shell was investigated. Our simulations were performed for a range of grain sizes and shell thicknesses, including the large strain regime. Our results show that hNP mechanical properties can be controlled by tuning the grain size of the polycrystalline shell, following an inverse Hall-Perch type dependence with the grain size. Deformation involves dislocation activity, twin hardening, grain boundary sliding, coalescence, and rotation. For single crystal shells at large strain there is hardenning following the closure of the internal cavity. For nanocrystalline shells at large strains a constant flow stress regime is observed even for deformations as high as 80%, thanks to grain boundary activity. Surprisingly, some particular grain size not only leads to an improvement in strength, but also a flow stress higher than the observed in their single-crystalline counterparts. Our work, suggest that grain boundary structure can be employed to improve and tailor desired mechanical properties in hollow nanostructures.es_ES
Patrocinadordc.description.sponsorshipComisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) CONICYT FONDECYT 1160639 1190662 United States Department of Defense Air Force Office of Scientific Research (AFOSR) FA9550-16-1-0122 Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) CONICYT PIA/BASAL AFB180001 Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT) CONICYT FONDECYT 11190484 ANPCyT PICT-2014-0696 SeCTyP-UN Cuyo M003 NLHPC ECM-02es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceComputational Materials Sciencees_ES
Keywordsdc.subjectHollow nanoparticleses_ES
Keywordsdc.subjectNanoindentationes_ES
Keywordsdc.subjectPolycrystalline materialses_ES
Keywordsdc.subjectPlasticityes_ES
Títulodc.titleNanoindentation of polycrystalline Pd hollow nanoparticles: Grain size rolees_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile