A de novo transcriptome analysis revealed that photomorphogenic genes are required for carotenoid synthesis in the dark‑grown carrot taproot
Author
dc.contributor.author
Arias González, Daniela
Author
dc.contributor.author
Maldonado Soto, Jonathan
Author
dc.contributor.author
Silva Ascencio, Hernán
Author
dc.contributor.author
Stange Klein, Claudia
Admission date
dc.date.accessioned
2020-08-25T16:03:58Z
Available date
dc.date.available
2020-08-25T16:03:58Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Molecular Genetics and Genomics (2020)
es_ES
Identifier
dc.identifier.other
10.1007/s00438-020-01707-4
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/176567
Abstract
dc.description.abstract
Carotenoids are terpenoid pigments synthesized by all photosynthetic and some non-photosynthetic organisms. In plants, these lipophilic compounds are involved in photosynthesis, photoprotection, and phytohormone synthesis. In plants, carotenoid biosynthesis is induced by several environmental factors such as light including photoreceptors, such as phytochromes (PHYs) and negatively regulated by phytochrome interacting factors (PIFs).Daucus carota(carrot) is one of the few plant species that synthesize and accumulate carotenoids in the storage root that grows in darkness. Contrary to other plants, light inhibits secondary root growth and carotenoid accumulation suggesting the existence of new mechanisms repressed by light that regulate both processes. To identify genes induced by dark and repressed by light that regulate carotenoid synthesis and carrot root development, in this work an RNA-Seq analysis was performed from dark- and light-grown carrot roots. Using this high-throughput sequencing methodology, a de novo transcriptome model with 63,164 contigs was obtained, from which 18,488 were differentially expressed (DEG) between the two experimental conditions. Interestingly, light-regulated genes are preferably expressed in dark-grown roots. Enrichment analysis of GO terms with DEGs genes, validation of the transcriptome model and DEG analysis through qPCR allow us to hypothesize that genes involved in photomorphogenesis and light perception such asPHYA, PHYB, PIF3, PAR1, CRY2, FYH3, FAR1andCOP1participate in the synthesis of carotenoids and carrot storage root development.
es_ES
Patrocinador
dc.description.sponsorship
Consejo Nacional de Ciencia y Tecnología (CONICYT), FONDECYT
1180747