Show simple item record

Authordc.contributor.authorCanessa, Enrique 
Authordc.contributor.authorChaigneau, Sergio E. 
Authordc.contributor.authorMoreno, Sebastián 
Authordc.contributor.authorSoto Lagos, Rodrigo Andrés 
Admission datedc.date.accessioned2020-10-23T15:01:41Z
Available datedc.date.available2020-10-23T15:01:41Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationCognitive Processing Jul 2020es_ES
Identifierdc.identifier.other10.1007/s10339-020-00985-5
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/177319
Abstractdc.description.abstractTo study concepts that are coded in language, researchers often collect lists of conceptual properties produced by human subjects. From these data, different measures can be computed. In particular, inter-concept similarity is an important variable used in experimental studies. Among possible similarity measures, the cosine of conceptual property frequency vectors seems to be a de facto standard. However, there is a lack of comparative studies that test the merit of different similarity measures when computed from property frequency data. The current work compares four different similarity measures (cosine, correlation, Euclidean and Chebyshev) and five different types of data structures. To that end, we compared the informational content (i.e., entropy) delivered by each of those 4 x 5 = 20 combinations, and used a clustering procedure as a concrete example of how informational content affects statistical analyses. Our results lead us to conclude that similarity measures computed from lower-dimensional data fare better than those calculated from higher-dimensional data, and suggest that researchers should be more aware of data sparseness and dimensionality, and their consequences for statistical analyses.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1200139es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceCognitive Processinges_ES
Keywordsdc.subjectCosine similarityes_ES
Keywordsdc.subjectEuclidean distancees_ES
Keywordsdc.subjectChebyshev distancees_ES
Keywordsdc.subjectClusteringes_ES
Keywordsdc.subjectConceptual propertieses_ES
Títulodc.titleInformational content of cosine and other similarities calculated from high-dimensional Conceptual Property Norm dataes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile