Mean dimension and an embedding theorem for real flows
Author
dc.contributor.author
Gutman, Yonatan
Author
dc.contributor.author
Jin, Lei
Admission date
dc.date.accessioned
2020-11-10T14:00:03Z
Available date
dc.date.available
2020-11-10T14:00:03Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Fundamenta Mathematicae 251 (2020), 161-181
es_ES
Identifier
dc.identifier.other
10.4064/fm597-2-2020
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/177631
Abstract
dc.description.abstract
We develop mean dimension theory for R-flows. We obtain fundamental properties and examples and prove an embedding theorem: Any real flow (X, R) of mean dimension strictly less than r admits an extension (Y, R) whose mean dimension is equal to that of (X, R) and such that (Y, R) can be embedded in the R-shift on the compact function space {f is an element of C(R, [-1,1]) : supp((f) over cap) subset of [-r , r]}, where (f) over cap is the Fourier transform of f considered as a tempered distribution. These canonical embedding spaces appeared previously as a tool in embedding results for Z-actions.
es_ES
Patrocinador
dc.description.sponsorship
NCN (National Science Center, Poland)
2016/22/E/ST1/00448
2013/08/A/ST1/00275
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
3190127
Basal funding AFB
170001
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
Institute of Mathematics of the Polish Academy of Sciences (IMPAN)