Mean dimension and an embedding theorem for real flows
Artículo
Access note
Acceso Abierto
Publication date
2020
Author
Abstract
We develop mean dimension theory for R-flows. We obtain fundamental properties and examples and prove an embedding theorem: Any real flow (X, R) of mean dimension strictly less than r admits an extension (Y, R) whose mean dimension is equal to that of (X, R) and such that (Y, R) can be embedded in the R-shift on the compact function space {f is an element of C(R, [-1,1]) : supp((f) over cap) subset of [-r , r]}, where (f) over cap is the Fourier transform of f considered as a tempered distribution. These canonical embedding spaces appeared previously as a tool in embedding results for Z-actions.
Patrocinador
NCN (National Science Center, Poland)
2016/22/E/ST1/00448
2013/08/A/ST1/00275
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
3190127
Basal funding AFB
170001
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Fundamenta Mathematicae 251 (2020), 161-181
Collections
The following license files are associated with this item: