Show simple item record

Authordc.contributor.authorDíaz Rodríguez, Pablo 
Authordc.contributor.authorMuñoz Sáez, Francisco 
Authordc.contributor.authorRogan Castillo, José 
Authordc.contributor.authorMartin Bragado, Ignacio 
Authordc.contributor.authorPerlado, J. M. 
Authordc.contributor.authorPeña Rodríguez, Ovidio 
Authordc.contributor.authorRivera, Antonio 
Authordc.contributor.authorValencia, Felipe 
Admission datedc.date.accessioned2020-11-11T22:11:52Z
Available datedc.date.available2020-11-11T22:11:52Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationNucl. Fusion 60 (2020) 096017 (14pp)es_ES
Identifierdc.identifier.other10.1088/1741-4326/aba092
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/177665
Abstractdc.description.abstractPlasma-facing materials (PFMs) for nuclear fusion, either in inertial confinement fusion (ICF) or in magnetic confinement fusion (MCF) approaches, must withstand extremely hostile irradiation conditions. Mitigation strategies are plausible in some cases, but usually the best, or even the only, solution for feasible plant designs is to rely on PFMs able to tolerate these irradiation conditions. Unfortunately, many studies report a lack of appropriate materials that have a good thermomechanical response and are not prone to deterioration by means of irradiation damage. The most deleterious effects are vacancy clustering and the retention of light species, as is the case for tungsten. In an attempt to find new radiation-resistant materials, we studied tungsten hollow nanoparticles under different irradiation scenarios that mimic ICF and MCF conditions. By means of classical molecular dynamics, we determined that these particles can resist astonishingly high temperatures (up to similar to 3000 K) and huge internal pressures (>5 GPa at 3000 K) before rupture. In addition, in the case of gentle pressure increase (ICF scenarios), a self-healing mechanism leads to the formation of an opening through which gas atoms are able to escape. The opening disappears as the pressure drops, restoring the original particle. Regarding radiation damage, object kinetic Monte Carlo simulations show an additional self-healing mechanism. At the temperatures of interest, defects (including clusters) easily reach the nanoparticle surface and disappear, which makes the hollow nanoparticles promising for ICF designs. The situation is less promising for MCF because the huge ion densities expected at the surface of PFMs lead to inevitable particle rupture.es_ES
Patrocinadordc.description.sponsorshipFondo Nacional de Investigaciones Cienteficas y Tecnologicas (FONDECYT, Chile) 1190662 Financiamiento Basal para Centros Cienteficos y Tecnologicos de Excelencia FB-0807 AFB180001 supercomputing infrastructure of the NLHPC ECM-02 Spanish MINECO ENE2015-70300-C3-3-R EUROfusion Consortium project AWP15-ENR-01/CEA-02 Madrid Region project (II)-CM S2018/EMT-4437es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOPes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceNuclear Fusiones_ES
Keywordsdc.subjectFirst walles_ES
Keywordsdc.subjectHollow nanoparticleses_ES
Keywordsdc.subjectHelium-irradiated tungstenes_ES
Keywordsdc.subjectNanomaterialses_ES
Keywordsdc.subjectNuclear fusiones_ES
Keywordsdc.subjectMolecular dynamicses_ES
Keywordsdc.subjectObject kinetic Monte Carlo simulationses_ES
Títulodc.titleHighly porous tungsten for plasma-facing applications in nuclear fusion power plants: a computational analysis of hollow nanoparticleses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile