About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Game-theoretic algorithm designs and analysis for interactions among contributors in Mobile Crowdsourcing with word of mouth

Artículo
Thumbnail
Open/Download
IconGame-Theoretic-Algorithm-Designs.pdf (212.9Kb)
Access note
Acceso a solo metadatos
Publication date
2020
Metadata
Show full item record
Cómo citar
Wang, Runhua
Cómo citar
Game-theoretic algorithm designs and analysis for interactions among contributors in Mobile Crowdsourcing with word of mouth
.
Copiar
Cerrar

Author
  • Wang, Runhua;
  • Zeng, Feng;
  • Yao, Lan;
  • Wu, Jinsong;
Abstract
Word-of-Mouth (WoM) mode, as a new mode of task sensing in crowdsourcing, shows high efficiency in building contributor groups. To better tap the potential of WoM mobile crowdsourcing, the underlying rationale of interactions among contributors needs to be well understood. In this article, we analyze the behavior of contributors based on the Stackelberg game, and find optimal strategies for contributors. We consider two different crowdsourcing tasks announcement methods: 1) one-time parallel and 2) multitime sequential announcement ways, which form two different market scenarios. Then, we formulate two-stage and multistage contributor game models for the two scenarios, respectively. The backward induction approach is used to analyze each game, and the problems to find the optimal strategies for contributors are transformed into optimization problems. Furthermore, the Lagrange multiplier and Karush-Kuhn-Tucker (KKT) methods are used to solve the optimization problems. We theoretically prove that Stackelberg equilibrium exists and is unique. Based on the proposed theory, we design algorithms to compute the profit-maximizing contribution quantity of sensing data for each contributor. Finally, we present the detailed experimental analysis and the experimental result shows the effectiveness of the proposed algorithms.
Patrocinador
National Natural Science Foundation of China (NSFC) 61672540 61502159 Natural Science Foundation of Hunan Province 1181809 Chile CONICYT (FONDECYT Regular) 1181809
Indexation
Artículo de publicación ISI
 
Artículo de publicación SCOPUS
 
Identifier
URI: https://repositorio.uchile.cl/handle/2250/178208
DOI: 10.1109/JIOT.2020.2989745
Quote Item
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8271-8286, Sept. 2020
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account