Show simple item record

Authordc.contributor.authorLópez, R. A. 
Authordc.contributor.authorLazar, M. 
Authordc.contributor.authorShaaban, S. M. 
Authordc.contributor.authorPoedts, S. 
Authordc.contributor.authorMoya Fuentes, Pablo 
Admission datedc.date.accessioned2021-01-25T13:16:03Z
Available datedc.date.available2021-01-25T13:16:03Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationAstrophysical Journal Letters 900 ( 2 ) Sep 2020es_ES
Identifierdc.identifier.other10.3847/2041-8213/abaf56
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/178294
Abstractdc.description.abstractHeat transport in the solar wind is dominated by suprathermal electron populations, i.e., a tenuous halo and a field-aligned beam/strahl, with high energies and antisunward drifts along the magnetic field. Their evolution may offer plausible explanations for the rapid decrease of the heat flux with the solar wind expansion, and self-generated instabilities, or so-called "heat flux instabilities" (HFIs), are typically invoked to explain this evolution. This Letter provides a unified description of the full spectrum of HFIs, as prescribed by the linear kinetic theory for high beta conditions (beta(e) >> 0.1) and different relative drifts (U) of the suprathermals. HFIs of different natures are examined, i.e., electromagnetic, electrostatic or hybrid, propagating parallel or obliquely to the magnetic field, etc., as well as their regimes of interplay (co-existence) or dominance. These alternative regimes of HFIs complement each other and may be characteristic of different relative drifts of suprathermal electrons and various conditions in the solar wind, e.g., in the slow or fast winds, streaming interaction regions, and interplanetary shocks. Moreover, these results strongly suggest that heat flux regulation may not involve just one but several HFIs, concomitantly or successively in time. Conditions for a single, well-defined instability with major effects on the suprathermal electrons and, implicitly, the heat flux, seem to be very limited. Whistler HFIs are more likely to occur but only for minor drifts (as also reported by recent observations), which may explain a modest implication in their regulation, shown already in quasilinear studies and numerical simulations.es_ES
Patrocinadordc.description.sponsorshipGerman Research Foundation (DFG) SCHL 201/35-1 C1 project Internal Funds KU Leuven C14/19/089 FWO G.0A23.16N European Space Agency C 90347 United States Department of Defense Air Force Office of Scientific Research (AFOSR) FA9550-19-1-0384 FWO 12Z6218N KU Leuven BOF Network Fellowship NF/19/001 ANID Chile through FONDECyT 1191351es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishinges_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAstrophysical Journal Letterses_ES
Keywordsdc.subjectSolar windes_ES
Keywordsdc.subjectPlasma astrophysicses_ES
Keywordsdc.subjectSpace plasmases_ES
Títulodc.titleAlternative high plasma beta regimes of electron heat-flux instabilities in the solar windes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile