Show simple item record

Authordc.contributor.authorMashalaba, Lwando 
Authordc.contributor.authorGalleguillos Torres, Mauricio 
Authordc.contributor.authorSeguel Seguel,Óscar 
Authordc.contributor.authorPoblete Olivares, Javiera 
Admission datedc.date.accessioned2021-02-16T18:53:05Z
Available datedc.date.available2021-02-16T18:53:05Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationGeoderma Regional 22 (2020) e00289es_ES
Identifierdc.identifier.other10.1016/j.geodrs.2020.e00289
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/178449
Abstractdc.description.abstractSoil physical properties influence vineyard behavior, therefore the knowledge of their spatial variability is essential for making vineyard management decisions. This study aimed to model and map selected soil properties by means of knowledge-based digital soil mapping approach.We used a Random Forest (RF) algorithm to link environmental covariates derived from a LiDAR flight and satellite spectral information, describing soil forming factors and ten selected soil properties (particle size distribution, bulk density, dispersion ratio, Ksat, field capacity, permanentwilting point, fast drainage pores and slowdrainage pores) at three depth intervals, namely 0–20, 20– 40, and 40–60 cmat a systematic grid (60 × 60m2). The descriptive statistics showed lowto very high variability within the field. RF model of particle size distribution, and bulk density performed well, although the models could not reliably predict saturated hydraulic conductivity. There was a better prediction performance (based on 34% model validation) in the upper depth intervals than the lower depth intervals (e.g., R2 of 0.66; nRMSE of 27.5% for clay content at 0–20 cm and R2 of 0.51; nRMSE of 16% at 40–60 cm). There was a better prediction performance in the lower depth intervals than the upper depth intervals (e.g., R2 of 0.49; nRMSE of 23% for dispersion ratio at 0–20 cm and R2 of 0.81; nRMSE of 30% at 40–60 cm). RF model overestimated areas with low values and underestimated areas with high values. Further analysis suggested that Topographic position Index, TopographicWetness Index, aspect, slope length factor, modified catchment area, catchment slope, and longitudinal curvature were the dominant environmental covariates influencing prediction of soil properties.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1171560 Center for Climate and Resilience Research ANID/FONDAP/15110009es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceGeoderma Regionales_ES
Keywordsdc.subjectDigital soil mappinges_ES
Keywordsdc.subjectSoil propertieses_ES
Keywordsdc.subjectVineyardes_ES
Keywordsdc.subjectRandom Forest modeles_ES
Keywordsdc.subjectEnvironmental covariateses_ES
Keywordsdc.subjectRemote sensinges_ES
Keywordsdc.subjectAlfisolses_ES
Títulodc.titlePredicting spatial variability of selected soil properties using digital soil mapping in a rainfed vineyard of central Chilees_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile