Show simple item record

Authordc.contributor.authorCastellanos Águila, Jesús 
Authordc.contributor.authorLodeiro, Lucas 
Authordc.contributor.authorMenéndez Proupin, Eduardo 
Authordc.contributor.authorMontero Alejo, Ana L. 
Authordc.contributor.authorPalacios, Pablo 
Authordc.contributor.authorConesa, José C. 
Authordc.contributor.authorWahnon, Perla 
Admission datedc.date.accessioned2021-04-13T13:55:08Z
Available datedc.date.available2021-04-13T13:55:08Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationACS Applied Materials & Interfaces (2020) 12:40es_ES
Identifierdc.identifier.other10.1021/acsami.0c11187
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/179101
Abstractdc.description.abstractCuprous oxide has been conceived as a potential alternative to traditional organic hole-transport layers in hybrid halide perovskite-based solar cells. Device simulations predict record efficiencies using this semiconductor, but experimental results do not yet show this trend. More detailed knowledge about the Cu2O/perovskite interface is mandatory to improve the photoconversion efficiency. Using density functional theory calculations, here, we study the interfaces of CH3NH3PbI3 with Cu2O to assess their influence on device performance. Several atomistic models of these interfaces are provided for the first time, considering different compositions of the interface atomic planes. The interface electronic properties are discussed on the basis of the optimal theoretical situation, but in connection with the experimental realizations and device simulations. It is shown that the formation of vacancies in the Cu2O terminating planes is essential to eliminate dangling bonds and trap states. The four interface models that fulfill this condition present a band alignment favorable for photovoltaic conversion. Energy of adhesion and charge transfer across the interfaces are also studied. The termination of CH3NH3PbI3 in PbI2 atomic planes seems optimal to maximize the photoconversion efficiency.es_ES
Patrocinadordc.description.sponsorshipANID/CONICYT/FONDECYT Regular 1150538 1171807 11180984 supercomputing infrastructure of the NLHPC ECM-02 Ministerio de Economia y Competitividad through the project SEHTOP-QC ENE2016-77798-C4-4-Res_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Chemical Societyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceACS Applied Materials & Interfaceses_ES
Keywordsdc.subjectHalide Perovskiteses_ES
Keywordsdc.subjectCuprous Oxidees_ES
Keywordsdc.subjectSolar Cellses_ES
Keywordsdc.subjectInterfaceses_ES
Keywordsdc.subjectBand Alignmentes_ES
Keywordsdc.subjectSustainable Energyes_ES
Keywordsdc.subjectPhotovoltaices_ES
Keywordsdc.subjectElectronic Structurees_ES
Títulodc.titleAtomic scale model and electronic structure of Cu2O/CH3NH3PbI3 interfaces in perovskite solar cellses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile