Clock genes, inflammation and the immune system-implications for diabetes, obesity and neurodegenerative diseases
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Vieira, Elaine
Cómo citar
Clock genes, inflammation and the immune system-implications for diabetes, obesity and neurodegenerative diseases
Author
Abstract
Inflammation is a common feature of several diseases, including obesity, diabetes and neurodegenerative disorders. Circadian clock genes are expressed and oscillate in many cell types such as macrophages, neurons and pancreatic beta cells. During inflammation, these endogenous clocks control the temporal gating of cytokine production, the antioxidant response, chemokine attraction and insulin secretion, among other processes. Deletion of clock genes in macrophages or brain-resident cells induces a higher production of inflammatory cytokines and chemokines, and this is often accompanied by an increased oxidative stress. In the context of obesity and diabetes, a high-fat diet disrupts the function of clock genes in macrophages and in pancreatic beta cells, contributing to inflammation and systemic insulin resistance. Recently, it has been shown that the administration of natural and synthetic ligands or pharmacological enhancers of the circadian clock function can selectively regulate the production and release of pro-inflammatory cytokines and improve the metabolic function in vitro and in vivo. Thus, a better understanding of the circadian regulation of the immune system could have important implications for the management of metabolic and neurodegenerative diseases.
Patrocinador
Ministry of Health, Italy
Ministry of Health Italy - Ricerca Corrente (MOH-RC)
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Int. J. Mol. Sci. 2020, 21, 9743
Collections
The following license files are associated with this item: