Show simple item record

Authordc.contributor.authorLodeiro, Lucas 
Authordc.contributor.authorBarría Cáceres, Felipe 
Authordc.contributor.authorJiménez, Karla 
Authordc.contributor.authorContreras, Renato 
Authordc.contributor.authorMontero Alejo, Ana L. 
Authordc.contributor.authorMenéndez Proupin, Eduardo 
Admission datedc.date.accessioned2021-08-23T23:11:39Z
Available datedc.date.available2021-08-23T23:11:39Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationACS Omega 2020, 5, 29477−29491es_ES
Identifierdc.identifier.other10.1021/acsomega.0c04420
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/181421
Abstractdc.description.abstractCharacterization and control of surfaces and interfaces are critical for photovoltaic and photocatalytic applications. In this work, we propose CH3NH3PbI3 (MAPI) perovskite slab models whose energy levels, free of quantum confinement, explicitly consider the spin−orbit coupling and thermal motion. We detail methodological tools based on the density functional theory that allow achieving these models at an affordable computational cost, and analytical corrections are proposed to correct these effects in other systems. The electronic state energies with respect to the vacuum of the static MAPI surface models, terminated in PbI2 and MAI atomic layers, are in agreement with the experimental data. The PbI2-terminated slab has in-gap surface states, which are independent of the thickness of the slab and also of the orientation of the cation on the surface. The surface states are not useful for alignments in photovoltaic devices, while they could be useful for photocatalytic reactions. The energy levels calculated for the MAIterminated surface coincide with the widely used values to estimate the MAPI alignment with the charge transport materials, i.e., −5.4 and −3.9 eV for valence band maximum and conduction band minimum, respectively. Our study offers these slab models to provide guidelines for optimal interface engineering.es_ES
Patrocinadordc.description.sponsorship1171807 11180984 supercomputing infrastructure of the NLHPC ECM-02 Ministerio de Economia y Competitividad through the project SEHTOP-QC ENE2016-77798-C4-4-R Millennium Nucleus MultiMat, Chilees_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmer Chemical Soces_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceACS Omegaes_ES
Keywordsdc.subjectTotal-energy calculationses_ES
Keywordsdc.subjectElectronic-propertieses_ES
Keywordsdc.subjectHalide perovskiteses_ES
Keywordsdc.subjectAtomic-structurees_ES
Keywordsdc.subjectBand offsetses_ES
Keywordsdc.subjectLeades_ES
Keywordsdc.subjectTerminationes_ES
Keywordsdc.subjectAlignmentes_ES
Títulodc.titleMethodological Issues in first-principle calculations of CH3NH3PbI3 perovskite surfaces: Quantum confinement and thermal motiones_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile