COVID-19: short-term forecast of ICU beds in times of crisis
Artículo
Open/ Download
Publication date
2021Metadata
Show full item record
Cómo citar
Goic Figueroa, Marcel
Cómo citar
COVID-19: short-term forecast of ICU beds in times of crisis
Abstract
By early May 2020, the number of new COVID-19 infections started to increase rapidly in Chile, threatening the ability of health services to accommodate all incoming cases. Suddenly, ICU capacity planning became a first-order concern, and the health authorities were in urgent need of tools to estimate the demand for urgent care associated with the pandemic. In this article, we describe the approach we followed to provide such demand forecasts, and we show how the use of analytics can provide relevant support for decision making, even with incomplete data and without enough time to fully explore the numerical properties of all available forecasting methods. The solution combines autoregressive, machine learning and epidemiological models to provide a short-term forecast of ICU utilization at the regional level. These forecasts were made publicly available and were actively used to support capacity planning. Our predictions achieved average forecasting errors of 4% and 9% for one- and two-week horizons, respectively, outperforming several other competing forecasting models.
Patrocinador
Instituto Sistemas Complejos de Ingeniería, ISCI ANID PIA AFB180003
Instituto Milenio para la investigación de imperfecciones de mercado y políticas públicas IS130002
Indexation
Artículo de publicación ISI
Quote Item
PLoS ONE 16(1): e0245272 - 2021
Collections
The following license files are associated with this item: