Stabilization of calcium oxalate precursors during the pre- and post-nucleation stages with poly(acrylic acid)
Artículo
Open/ Download
Access note
Acceso abierto
Publication date
2021Metadata
Show full item record
Cómo citar
Díaz Soler, Felipe Arturo Sebastián
Cómo citar
Stabilization of calcium oxalate precursors during the pre- and post-nucleation stages with poly(acrylic acid)
Author
Abstract
In this work, calcium oxalate (CaOx) precursors were stabilized by poly(acrylic acid) (PAA) as an additive under in vitro crystallization assays involving the formation of pre-nucleation clusters of CaOx via a non-classical crystallization (NCC) pathway. The in vitro crystallization of CaOx was carried out in the presence of 10, 50 and 100 mg/L PAA by using automatic calcium potentiometric titration experiments at a constant pH of 6.7 at 20 degrees C. The results confirmed the successful stabilization of amorphous calcium oxalate II and III (ACOII and ACO III) nanoparticles formed after PNC in the presence of PAA and suggest the participation and stabilization of polymer-induced liquid-precursor (PILP) in the presence of PAA. We demonstrated that PAA stabilizes CaOx precursors with size in the range of 20-400 nm. PAA additive plays a key role in the in vitro crystallization of CaOx stabilizing multi-ion complexes in the pre-nucleation stage, thereby delaying the nucleation of ACO nanoparticles. Indeed, PAA additive favors the formation of more hydrated and soluble phase of ACO nanoparticles that are bound by electrostatic interactions to carboxylic acid groups of PAA during the post-nucleation stage. These findings may help to a better understanding of the pathological mineralization resulting in urolithiasis in mammals.
Patrocinador
Chilean Agency for Research and Development (ANID) - Fondecyt 1171520
ACCDiS center, Fondap 15130011
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) 21181417
Spanish Government
European Commission RTI2018-099565-B-I00
Junta de Andalucia RNM-179
Indexation
Artículo de publícación WoS
Quote Item
Nanomaterials 2021, 11, 235
Collections
The following license files are associated with this item: