Show simple item record

Authordc.contributor.authorEyheramendy, Susana
Authordc.contributor.authorSaa, Pedro A.
Authordc.contributor.authorUndurraga, Eduardo A.
Authordc.contributor.authorValencia, Carlos
Authordc.contributor.authorLópez, Carolina
Authordc.contributor.authorMéndez, Luis
Authordc.contributor.authorPizarro Berdichevsky, Javier Alejandro
Authordc.contributor.authorFinkelstein Kulka, Andrés
Authordc.contributor.authorSolari, Sandra
Authordc.contributor.authorSalas, Nicolás
Authordc.contributor.authorBahamondes, Pedro
Authordc.contributor.authorUgarte, Martín
Authordc.contributor.authorBarceló, Pablo
Authordc.contributor.authorArenas, Marcelo
Authordc.contributor.authorAgosín, Eduardo
Admission datedc.date.accessioned2022-04-06T19:36:49Z
Available datedc.date.available2022-04-06T19:36:49Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationiScience 24, 103419, December 17, 2021es_ES
Identifierdc.identifier.other10.1016/j.isci.2021.103419
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/184760
Abstractdc.description.abstractThe sudden loss of smell is among the earliest and most prevalent symptoms of COVID-19 when measured with a clinical psychophysical test. Research has shown the potential impact of frequent screening for olfactory dysfunction, but existing tests are expensive and time consuming. We developed a low-cost ($0.50/test) rapid psychophysical olfactory test (KOR) for frequent testing and a model-based COVID-19 screening framework using a Bayes Network symptoms model. We trained and validated the model on two samples: suspected COVID-19 cases in five healthcare centers (n = 926; 33% prevalence, 309 RT-PCR confirmed) and healthy miners (n = 1,365; 1.1% prevalence, 15 RT-PCR confirmed). The model predicted COVID-19 status with 76% and 96% accuracy in the healthcare and miners samples, respectively (healthcare: AUC = 0.79 [0.75–0.82], sensitivity: 59%, specificity: 87%; miners: AUC = 0.71 [0.63–0.79], sensitivity: 40%, specificity: 97%, at 0.50 infection probability threshold). Our results highlight the potential for low-cost, frequent, accessible, routine COVID-19 testing to support society’s reopening.es_ES
Patrocinadordc.description.sponsorshipTechnological Adoption Fund SiEmpre from SOFOFA Hub (CORFO) ANID through the Millennium Science Initiative Program ICN17 002 ANID Millennium Science Initiative Program NCN17 081 ANID/FONDAP CIGIDEN 15110017 ANID FONDECYT 1200146 ANID FONDECYT de Iniciacion 11190871es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherCelles_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceiSciencees_ES
Keywordsdc.subjectTransmissiones_ES
Keywordsdc.subjectDysfunctiones_ES
Keywordsdc.subjectCOVID-19 (Enfermedad)es_ES
Títulodc.titleScreening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory testes_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States