Show simple item record

Authordc.contributor.authorZenteno Quinteros, Beatriz Antonia
Authordc.contributor.authorViñas, Adolfo
Authordc.contributor.authorMoya Fuentes, Pablo Sebastián
Admission datedc.date.accessioned2022-05-23T16:01:06Z
Available datedc.date.available2022-05-23T16:01:06Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationThe Astrophysical Journal, 923:180 (15pp), 2021 December 20es_ES
Identifierdc.identifier.other10.3847/1538-4357/ac2f9c
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/185664
Abstractdc.description.abstractElectron velocity distributions in the solar wind are known to have field-aligned skewness, which has been characterized by the presence of secondary populations such as the halo and strahl. Skewness may provide energy for the excitation of electromagnetic instabilities, such as the whistler heat flux instability (WHFI), which may play an important role in regulating the electron heat flux in the solar wind. Here we use kinetic theory to analyze the stability of the WHFI in a solar-wind-like plasma where solar wind core, halo, and strahl electrons are described as a superposition of two distributions: a Maxwellian core, and another population modeled by a Kappa distribution to which an asymmetry term has been added, representing the halo and also the strahl. Considering distributions with small skewness, we solve the dispersion relation for the parallel-propagating whistler mode and study its linear stability for different plasma parameters. Our results show that the WHFI can develop in this system and provide stability thresholds for this instability, as a function of the electron beta and the parallel electron heat flux, to be compared with observational data. However, since different plasma states, with different stability level to the WHFI, can have the same moment heat flux value, it is the skewness (i.e., the asymmetry of the distribution along the magnetic field), and not the heat flux, that is the best indicator of instabilities. Thus, systems with high heat flux can be stable enough to WHFI, so that it is not clear whether the instability can effectively regulate the heat flux values through wave–particle interactions.es_ES
Patrocinadordc.description.sponsorshipANID, Chile 21181965 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1191351 Catholic University of America/IACS National Aeronautics & Space Administration (NASA)es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishinges_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceAstrophysical JournaLes_ES
Keywordsdc.subjectElectron-Cyclotron Instabilityes_ES
Keywordsdc.subjectSuprathermal electronses_ES
Keywordsdc.subjectDispersion Functiones_ES
Keywordsdc.subjectPlasmaes_ES
Keywordsdc.subjectHaloes_ES
Keywordsdc.subjectConductiones_ES
Keywordsdc.subjectTemperaturees_ES
Títulodc.titleSkew-kappa distribution functions and whistler heat flux instability in the solar wind: the core-strahlo modeles_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publícación WoSes_ES
Indexationuchile.indexArtículo de publicación SCOPUSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States