Show simple item record

Authordc.contributor.authorMoguilner, Sebastian
Authordc.contributor.authorBirba, Agustina
Authordc.contributor.authorFittipaldi, Sol
Authordc.contributor.authorGonzález Campos, Cecilia
Authordc.contributor.authorTagliazucchi, Enzo Rodolfo
Authordc.contributor.authorReyes, Pablo
Authordc.contributor.authorMatallana, Diana
Authordc.contributor.authorParra, Mario A.
Authordc.contributor.authorSlachevsky Chonchol, Andrea María
Authordc.contributor.authorFarías Gontupil, Gonzalo Andrés
Authordc.contributor.authorCruzat Grand, Josefina
Authordc.contributor.authorGarcía, Adolfo
Authordc.contributor.authorEyre, Harris A.
Authordc.contributor.authorLa Joie, Renaud
Authordc.contributor.authorRabinovici, Gil
Authordc.contributor.authorWhelan, Robert
Authordc.contributor.authorIbáñez, Agustín
Admission datedc.date.accessioned2023-08-22T21:02:29Z
Available datedc.date.available2023-08-22T21:02:29Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationJ. Neural Eng. 19 (2022) 046048es_ES
Identifierdc.identifier.other10.1088/1741-2552/ac87d0
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/195297
Abstractdc.description.abstractObjective. The differential diagnosis of behavioral variant frontotemporal dementia (bvFTD) and Alzheimer’s disease (AD) remains challenging in underrepresented, underdiagnosed groups, including Latinos, as advanced biomarkers are rarely available. Recent guidelines for the study of dementia highlight the critical role of biomarkers. Thus, novel cost-effective complementary approaches are required in clinical settings.es_ES
Abstractdc.description.abstractApproach. We developed a novel framework based on a gradient boosting machine learning classifier, tuned by Bayesian optimization, on a multi-feature multimodal approach (combining demographic, neuropsychological, magnetic resonance imaging (MRI), and electroencephalography/functional MRI connectivity data) to characterize neurodegeneration using site harmonization and sequential feature selection.es_ES
Abstractdc.description.abstractWe assessed 54 bvFTD and 76 AD patients and 152 healthy controls (HCs) from a Latin American consortium (ReDLat). Main results. The multimodal model yielded high area under the curve classification values (bvFTD patients vs HCs: 0.93 (±0.01); AD patients vs HCs: 0.95 (±0.01); bvFTD vs AD patients: 0.92 (±0.01)). The feature selection approach successfully filtered non-informative multimodal markers (from thousands to dozens).es_ES
Abstractdc.description.abstractResults. Proved robust against multimodal heterogeneity, sociodemographic variability, and missing data.es_ES
Abstractdc.description.abstractSignificance. The model accurately identified dementia subtypes using measures readily available in underrepresented settings, with a similar performance than advanced biomarkers. This approach, if confirmed and replicated, may potentially complement clinical assessments in developing countries.es_ES
Patrocinadordc.description.sponsorshipConsejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) ANID/FONECYT Regular 1170010 ANPCyT FONCyT 2017-1820 ANID/FONDAP 15150012 Takeda Pharmaceutical Company Ltd CW2680521 Sistema General de Regalias BPIN2018000100059 Universidad del Valle CI 5316 Alzheimer's Association UK-20-639295 MULTI-PARTNER CONSORTIUM TO EXPAND DEMENTIA RESEARCH IN LATIN AMERICA National Institutes of Health, National Institutes of Aging R01 AG057234 Alzheimer's Association SG-20-725707es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishinges_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceJournal of Neural Engineeringes_ES
Keywordsdc.subjectMultimodal neuroimaginges_ES
Keywordsdc.subjectNeurodegenerationes_ES
Keywordsdc.subjectHarmonizationes_ES
Keywordsdc.subjectFeature selectiones_ES
Keywordsdc.subjectMachine learninges_ES
Títulodc.titleMulti-feature computational framework for combined signatures of dementia in underrepresented settingses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publícación WoSes_ES
Indexationuchile.indexArtículo de publicación SCOPUSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States