Show simple item record

Authordc.contributor.authorOróstica Tapia, Karen Yasmine
Authordc.contributor.authorSáez Hidalgo, Juan Manuel
Authordc.contributor.authorSantiago, Pamela R. de
Authordc.contributor.authorRivas, Solange
Authordc.contributor.authorContreras, Sebastián
Authordc.contributor.authorNavarro, Gonzalo
Authordc.contributor.authorAsenjo de Leuze de Lancizolle, Juan
Authordc.contributor.authorOlivera Nappa, Álvaro María
Authordc.contributor.authorArmisen Yáñez, Ricardo Amado
Admission datedc.date.accessioned2024-01-15T15:34:21Z
Available datedc.date.available2024-01-15T15:34:21Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationJournal of Translational Medicine (2022) 20:373es_ES
Identifierdc.identifier.other10.1186/s12967-022-03572-8
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/196947
Abstractdc.description.abstractBackground: Recently, extensive cancer genomic studies have revealed mutational and clinical data of large cohorts of cancer patients. For example, the Pan‑Lung Cancer 2016 dataset (part of The Cancer Genome Atlas project), sum‑ marises the mutational and clinical profiles of different subtypes of Lung Cancer (LC). Mutational and clinical signa‑ tures have been used independently for tumour typification and prediction of metastasis in LC patients. Is it then possible to achieve better typifications and predictions when combining both data streams? Methods: In a cohort of 1144 Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LSCC) patients, we studied the number of missense mutations (hereafter, the Total Mutational Load TML) and distribution of clinical variables, for different classes of patients. Using the TML and different sets of clinical variables (tumour stage, age, sex, smoking status, and packs of cigarettes smoked per year), we built Random Forest classification models that calculate the likelihood of developing metastasis. Results: We found that LC patients different in age, smoking status, and tumour type had significantly different mean TMLs. Although TML was an informative feature, its effect was secondary to the "tumour stage" feature. However, its contribution to the classification is not redundant with the latter; models trained using both TML and tumour stage performed better than models trained using only one of these variables. We found that models trained in the entire dataset (i.e., without using dimensionality reduction techniques) and without resampling achieved the highest perfor‑ mance, with an F1 score of 0.64 (95%CrI [0.62, 0.66]). Conclusions: Clinical variables and TML should be considered together when assessing the likelihood of LC patients progressing to metastatic states, as the information these encode is not redundant. Altogether, we provide new evi‑ dence of the need for comprehensive diagnostic tools for metastasis.es_ES
Patrocinadordc.description.sponsorshipGobierno de Chile Programa Centro Internacional de Excelencia CORFO 13CEE2-21602 Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT PIA/ANILLOS ANID ACT210079 Becas CONICYT PIA FB0001 Centro de Biotecnología y Bioingeniería Beca de doctorado de KYO 21182123es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherBMCes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceJournal of Translational Medicinees_ES
Keywordsdc.subjectRandom forestes_ES
Keywordsdc.subjectSmokinges_ES
Keywordsdc.subjectClinical variableses_ES
Keywordsdc.subjectLung adenocarcinoma (LUAD)es_ES
Keywordsdc.subjectLung squamous cell carcinoma (LSCC) and metastasises_ES
Títulodc.titleTotal mutational load and clinical features as predictors of the metastatic status in lung adenocarcinoma and squamous cell carcinoma patientses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publícación WoSes_ES
Indexationuchile.indexArtículo de publicación SCOPUSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States