Distribuciones Cuasi-Estacionarias para el proceso de Bessei en el intervalo (0,1)
Tesis
Publication date
2017Metadata
Show full item record
Cómo citar
San Martín Aristegui, Jaime
Cómo citar
Distribuciones Cuasi-Estacionarias para el proceso de Bessei en el intervalo (0,1)
Author
Professor Advisor
Abstract
En la presente tesis se estudian las distribuciones cuasi-estacionarias para el proceso de Bessel en el intervalo (0,1]. Este proceso corresponde a una difusión uni-dimensional con coeficiente de drift singular en 0, la cual se extingue al llegar a 1.
Debido a la naturaleza del problema, se hace un estudio sobre difusiones uni-dimensionales, tocando temas tales como condiciones de explosión, existencia y unicidad. Posteriormente se trata el problema en cuestión. La principal herramienta consiste en una representación espectral adecuada para el núcleo de transición del proceso de Bessel, obtenido a partir del Movimiento Browniano en la bola unitaria que se extingue al llegar a la frontera. Se demuestra que existe una única distribución cuasi-estacionaria para el proceso, que además resulta ser su límite de Yaglom.
Se tocan algunos tópicos adicionales sobre el proceso de Bessel tales como su tipo de frontera y operadores diferenciales asociados. Esto dará orientación a una posible generalización de estos resultados a difusiones más generales.
General note
Magíster en Ciencias de la Ingeniería, Mención Matemáticas Aplicadas.
Ingeniero Civil Matemático
Identifier
URI: https://repositorio.uchile.cl/handle/2250/145793
Collections
The following license files are associated with this item: