Show simple item record

Professor Advisordc.contributor.advisorMendoza Araya, Patricio
Authordc.contributor.authorMira Gebauer, Nicolás Francisco 
Associate professordc.contributor.otherRahmann Zúñiga, Claudia
Associate professordc.contributor.otherFlores Bahamonde, Freddy
Admission datedc.date.accessioned2019-10-09T19:45:00Z
Available datedc.date.available2019-10-09T19:45:00Z
Publication datedc.date.issued2019
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171088
General notedc.descriptionTesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Eléctricaes_ES
General notedc.descriptionMemoria para optar al título de Ingeniero Civil Eléctrico
Abstractdc.description.abstractMicrogrids are one of the key technologies to facilitate the integration of large amounts of renewable generation technologies to the main grid. The main power supplies inside the microgrid are power electronic devices which are responsible for energy conversion and provide the necessary control. Dynamical interactions between the microgrid and newly connected power electronic-based sources can lead to small-signal instability. Hence, several stability analysis approaches have been developed over the recent years, particularly methods to ensure stability by first dividing the system into source and load subsystems and then applying the Nyquist criterion to the respective source/load impedances ratio. Nevertheless, this aspect has been rarely studied considering droop-controlled inverters, as the active power droop control also impacts the output frequency of micro-sources and has a deep impact in the small-signal impedances of the inverters. The main objective of this thesis is to characterize the small-signal impedance of droop-controlled inverters typically used in microgrids through simplified models, in order to achieve a comprehensive understanding of their behavior. This work postulates as hypothesis that the general behavior of the small-signal impedance of droop-controlled inverters when operation conditions change can be characterized through the analysis of the transfer functions of linearized multi-input multi-output reduced-order inverter models, by contrasting them with the resulting small-signal impedances of more complex models. The obtained results show that the small-signal impedance of these inverters were effectively characterized, specially by one of the proposed models. Two indices were developed in order to quantify the graphically obtained results, which confirmed the performance of the developed models, specially with respect to DD, DQ and QD-Channels.The indices confirmed the identification of the operating variables that impact the small-signal impedance the most when perturbed. The results also indicate that the low-frequency range of the small-signal impedance is the most affected range when changing the operating conditions, as the high-frequency range tends to converge to the large-signal impedance. This work could lead to improved small-signal stability studies, in which one of the biggest problems nowadays is the dependence of the small-signal impedance on the changing operating point.es_ES
Patrocinadordc.description.sponsorshipConicyt Proyecto PFCHA/MagísterNacional/2017- 22172061es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectInversores eléctricoses_ES
Keywordsdc.subjectElectrónica de potenciaes_ES
Keywordsdc.subjectRedes eléctricases_ES
Keywordsdc.subjectcontrol droopes_ES
Títulodc.titleroop-controlled inverters small-signal impedance characterization for stability studieses_ES
Document typedc.typeTesis
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Eléctricaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile