About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

A conducting state with properties of a slow inactivated state in a Shaker K+ channel mutant

Artículo
Thumbnail
Open/Download
IconOlcese R-Conducting.pdf (963.1Kb)
Publication date
2001-02
Metadata
Show full item record
Cómo citar
Olcese, Riccardo
Cómo citar
A conducting state with properties of a slow inactivated state in a Shaker K+ channel mutant
.
Copiar
Cerrar

Author
  • Olcese, Riccardo;
  • Sigg, Daniel;
  • Latorre, Ramón;
  • Bezanilla, Francisco;
  • Stefani, Enrico;
Abstract
In Shaker K+ channel, the amino terminus deletion Delta6-46 removes fast inactivation (N-type) unmasking a slow inactivation process. In Shaker Delta6-46 (Sh-IR) background, two additional mutations (T449V-I470C) remove slow inactivation, producing a noninactivating channel. However, despite the fact that Sh-IR-T449V-I470C mutant channels remain conductive, prolonged depolarizations (1 min, 0 mV) produce a shift of the QV curve by about -30 mV suggesting that the channels still undergo the conformational changes typical of slow inactivation. For depolarizations longer than 50 ms, the tail currents measured during repolarization to -90 mV display a slow component that increases in amplitude as the duration of the depolarizing pulse increases. We found that the slow development of the QV shift had a counterpart in the amplitude of the slow component of the ionic tail current that is not present in Sh-IR. During long depolarizations, the time course of both the increase in the slow component of the tail current and the change in voltage dependence of the charge movement could be well fitted by exponential functions with identical time constant of 459 Ins. Single channel recordings revealed that after prolonged depolarizations, the channels remain conductive for long periods after membrane repolarization. Nonstationary autocovariance analysis performed on macroscopic current in the T449V-I470C mutant confirmed that a novel open state appears with increasing prepulse depolarization time. These observations suggest that in the mutant studied, a new open state becomes progressively populated during long depolarizations (>50 ms). An appealing interpretation of these results is that the new open state of the mutant channel corresponds to a slow inactivated state of Sh-IR that became conductive.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/118662
ISSN: 0022-1295
Quote Item
JOURNAL OF GENERAL PHYSIOLOGY Volume: 117 Issue: 2 Pages: 149-163 Published: FEB 2001
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account