About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

On the topology of solenoidal attractors of the cylinder

Artículo
Thumbnail
Open/Download
IconBamon_Rodrigo.pdf (234.7Kb)
Publication date
2006
Metadata
Show full item record
Cómo citar
Bamón Cabrera, Rodrigo
Cómo citar
On the topology of solenoidal attractors of the cylinder
.
Copiar
Cerrar

Author
  • Bamón Cabrera, Rodrigo;
  • Kiwi, Jan;
  • Rivera Letelier, Juan;
  • Urzúa, Richard;
Abstract
We study the dynamics of skew product endomorphisms acting on the cylinder R/Z x R, of the form (theta, t) -> (l theta, gimel t + tau(theta)), where l >= 2 is an integer, gimel is an element of (0, 1) and tau : R/Z -> R is a continuous function. We are interested in topological properties of the global attractor Omega(gimel,tau) of this map. Given l and a Lipschitz function tau, we show that the attractor set Omega(gimel,tau) is homeomorphic to a closed topological annulus for all gimel sufficiently close to 1. Moreover, we prove that Omega(gimel,tau) is a Jordan curve for at most finitely many gimel is an element of (0, 1). These results rely on a detailed study of iterated "cohomological" equations of the form tau = L gimel(1)mu(1),mu(1) = L gimel(2)mu(2),..., here L gimel mu = mu circle...circle m(l) - gimel mu and m(l) :R/Z -+ R/Z denotes the multiplication by l map. We show the following finiteness result: each Lipschitz function tau can be written in a canonical way as, tau = L gimel(1) circle...circle L gimel(m)mu, where m >= 0, gimel(1),...gimel(m) is an element of(0, 1] and the Lipschitz function mu satisfies mu = L gimel p for every continuous function p and every gimel is an element of (0,1].
Identifier
URI: https://repositorio.uchile.cl/handle/2250/118755
ISSN: 0294-1449
Quote Item
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE Volume: 23 Issue: 2 Pages: 209-236 Published: 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account