About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls

Artículo
Thumbnail
Open/Download
IconChavez_Francisco.pdf (524.7Kb)
Publication date
2006-06
Metadata
Show full item record
Cómo citar
Chávez, Francisco P.
Cómo citar
Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls
.
Copiar
Cerrar

Author
  • Chávez, Francisco P.;
  • Gordillo, Felipe;
  • Jerez Guevara, Carlos;
Abstract
Polychlorinated biphenyls (PCBs) are one of the most widely distributed classes of chlorinated chemicals in the environment. For cleanup of large areas of PCB-contaminated environments, bioremediation seems to be a promising approach. However, the multitude of PCB congeners, their low bioavailability and high toxicity are important factors that affect the cleanup progression. Elucidating how the PCB-degrading microorganisms involved in the process adapt to and deal with the stressing conditions caused by this class of compounds may help to improve the bioremediation process. Also specific physiological characteristics of biphenyl-utilizing bacteria involved in the degradation of PCBs may enhance their availability to these compounds and therefore contribute to a better microbial mineralization. This review will focus in the stress responses caused in aerobic biphenyl-utilizing bacteria by PCBs and its metabolic intermediates and will also analyze bacterial properties such as motility and chemotaxis, adherence to solid surfaces, biosurfactant production and biofilm development, all properties found to enhance bacteria-pollutant interaction.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/118776
ISSN: 0734-9750
Quote Item
BIOTECHNOLOGY ADVANCES Volume: 24 Issue: 3 Pages: 309-320 Published: MAY-JUN 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account