About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio)

Artículo
Thumbnail
Open/Download
IconHernandez_Pedro.pdf (747.2Kb)
Publication date
2006-03
Metadata
Show full item record
Cómo citar
Hernández, Pedro
Cómo citar
Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio)
.
Copiar
Cerrar

Author
  • Hernández, Pedro;
  • Moreno, Virginia;
  • Olivari, Francisco;
  • Allende Connelly, Miguel;
Abstract
In teleosts, the lateral line system is composed of neuromasts containing hair cells that are analogous to those present in the inner ear of all vertebrates. In the zebrafish embryo and early larva, this system is composed of the anterior lateral line (ALL), which covers the head, and the posterior lateral line (PLL), present in the trunk and tail. The mechanosensory hair cells found in neuromasts can be labeled in vivo using fluorescent dyes such as 4-di-2-Asp (DiAsp) or FM1-43. We have studied the effects of water-borne copper exposure on the function of the lateral line system in zebrafish larvae. Our results show that transient incubation of post-hatching larvae for 2 h with non-lethal concentrations of copper (1–50 lM CuSO4) induces cellular damage localized to neuromasts, apoptosis, and loss of hair cell markers. This effect is specific to copper, as other metals did not show these effects. Since hair cells in fish can regenerate, we followed the reappearance of viable hair cells in neuromasts after copper removal. In the PLL, we determined that there is a threshold concentration of copper above which regeneration does not occur, whereas, at lower concentrations, the length of time it takes for viable hair cells to reappear is dependent on the amount of copper used during the treatment. The ALL behaves differently though, as regeneration can occur even after treatments with concentrations of copper an order of magnitude higher than the one that irreversibly affects the PLL. Regeneration of hair cells is dependent on cell division within the neuromasts as damage that precludes proliferation prevents reappearance of this cell type.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/118806
ISSN: 0378-5955
Quote Item
HEARING RESEARCH Volume: 213 Issue: 1-2 Pages: 1-10 Published: MAR 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account