Author | dc.contributor.author | Behn Von Schmieden, Antonio | |
Author | dc.contributor.author | Correa, Iván | es_CL |
Author | dc.contributor.author | Hentzel, Irvin Roy | es_CL |
Admission date | dc.date.accessioned | 2010-04-05T19:15:40Z | |
Available date | dc.date.available | 2010-04-05T19:15:40Z | |
Publication date | dc.date.issued | 2008 | |
Cita de ítem | dc.identifier.citation | Communications in Algebra, 36: 132–141, 2008 | en_US |
Identifier | dc.identifier.issn | 0092-7872 print | |
Identifier | dc.identifier.other | DOI: 10.1080/00927870701665248 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/119017 | |
Abstract | dc.description.abstract | In this article we study nonassociative rings satisfying the polynomial identity x yz =
y zx , which we call “cyclic rings.” We prove that every semiprime cyclic ring is
associative and commutative and that every cyclic right-nilring is solvable. Moreover,
we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these
results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras. | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | Taylor & Francis Group | en_US |
Keywords | dc.subject | Nonassociative semiprime nilpotent identity algebra | en_US |
Título | dc.title | SEMIPRIMALITY AND NILPOTENCY OF NONASSOCIATIVE RINGS SATISFYING x (yz) = y (zx) | en_US |
Document type | dc.type | Artículo de revista | |