SEMIPRIMALITY AND NILPOTENCY OF NONASSOCIATIVE RINGS SATISFYING x (yz) = y (zx)
Artículo
![Thumbnail](/themes/Mirage2/images/cubierta.jpg)
Open/ Download
Publication date
2008Metadata
Show full item record
Cómo citar
Behn Von Schmieden, Antonio
Cómo citar
SEMIPRIMALITY AND NILPOTENCY OF NONASSOCIATIVE RINGS SATISFYING x (yz) = y (zx)
Abstract
In this article we study nonassociative rings satisfying the polynomial identity x yz =
y zx , which we call “cyclic rings.” We prove that every semiprime cyclic ring is
associative and commutative and that every cyclic right-nilring is solvable. Moreover,
we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these
results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/119017
DOI: DOI: 10.1080/00927870701665248
ISSN: 0092-7872 print
Quote Item
Communications in Algebra, 36: 132–141, 2008
Collections