About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Phoenix Is Required for Mechanosensory Hair Cell Regeneration in the Zebrafish Lateral Line

Artículo
Thumbnail
Open/Download
IconAllende_Migue_Luis.pdf (1.656Mb)
Publication date
2009-04-17
Metadata
Show full item record
Cómo citar
Behra, Martine
Cómo citar
Phoenix Is Required for Mechanosensory Hair Cell Regeneration in the Zebrafish Lateral Line
.
Copiar
Cerrar

Author
  • Behra, Martine;
  • Bradsher, John;
  • Sougrat, Rachid;
  • Gallardo, Viviana E.;
  • Allende Connelly, Miguel;
  • Burgess, Shawn M.;
Abstract
In humans, the absence or irreversible loss of hair cells, the sensory mechanoreceptors in the cochlea, accounts for a large majority of acquired and congenital hearing disorders. In the auditory and vestibular neuroepithelia of the inner ear, hair cells are accompanied by another cell type called supporting cells. This second cell population has been described as having stem cell-like properties, allowing efficient hair cell replacement during embryonic and larval/fetal development of all vertebrates. However, mammals lose their regenerative capacity in most inner ear neuroepithelia in postnatal life. Remarkably, reptiles, birds, amphibians, and fish are different in that they can regenerate hair cells throughout their lifespan. The lateral line in amphibians and in fish is an additional sensory organ, which is used to detect water movements and is comprised of neuroepithelial patches, called neuromasts. These are similar in ultra-structure to the inner ear’s neuroepithelia and they share the expression of various molecular markers. We examined the regeneration process in hair cells of the lateral line of zebrafish larvae carrying a retroviral integration in a previously uncharacterized gene, phoenix (pho). Phoenix mutant larvae develop normally and display a morphologically intact lateral line. However, after ablation of hair cells with copper or neomycin, their regeneration in pho mutants is severely impaired. We show that proliferation in the supporting cells is strongly decreased after damage to hair cells and correlates with the reduction of newly formed hair cells in the regenerating phoenix mutant neuromasts. The retroviral integration linked to the phenotype is in a novel gene with no known homologs showing high expression in neuromast supporting cells. Whereas its role during early development of the lateral line remains to be addressed, in later larval stages phoenix defines a new class of proteins implicated in hair cell regeneration.
Patrocinador
This research was supported by the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health (SB). MLA was supported by FONDECYT (1070867) and ICM (P06-037F). VG received a CONICYT Fellowship and a travel grant from the Vicerrectorı´a de Asuntos Acade´micos, Departamento de Postgrado y Postı´tulo. Part of this work was supported by the Intramural Program of Eunice Kennedy Shriver National Institute of Child Health and Human Development. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/119122
ISSN: 1553-7390
Quote Item
PLOS GENETICS, Volume: 5, Issue: 4, Article Number: e1000455, 2009
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account