Estimating the number of negative eigenvalues of a relativistic Hamiltonian with regular magnetic field
Artículo
![Thumbnail](/themes/Mirage2/images/cubierta.jpg)
Open/ Download
Publication date
2008-01-02Metadata
Show full item record
Cómo citar
Iftimie, Viorel
Cómo citar
Estimating the number of negative eigenvalues of a relativistic Hamiltonian with regular magnetic field
Author
Abstract
We prove the analog of the Cwickel-Lieb-Rosenblum estimation for the
number of negative eigenvalues of a relativistic Hamiltonian with magnetic
field B 2 C1
pol(Rd) and an electric potential V 2 L1
loc(Rd), V− 2 Ld(Rd)\
Ld/2(Rd). Compared to the nonrelativistic case, this estimation involves
both norms of V− in Ld/2(Rd) and in Ld(Rd). A direct consequence is a
Lieb-Thirring inequality for the sum of powers of the absolute values of
the negative eigenvalues.
Patrocinador
VI and RP acknowledge partial support from the Contract no. 2-CEx06-11-
18/2006.
Quote Item
arXiv:0711.1233v1 [math-ph]
Collections